On the Gause predator-prey model with a refuge: a fresh look at the history.
نویسنده
چکیده
This article re-analyses a prey-predator model with a refuge introduced by one of the founders of population ecology Gause and his co-workers to explain discrepancies between their observations and predictions of the Lotka-Volterra prey-predator model. They replaced the linear functional response used by Lotka and Volterra by a saturating functional response with a discontinuity at a critical prey density. At concentrations below this critical density prey were effectively in a refuge while at a higher densities they were available to predators. Thus, their functional response was of the Holling type III. They analyzed this model and predicted existence of a limit cycle in predator-prey dynamics. In this article I show that their model is ill posed, because trajectories are not well defined. Using the Filippov method, I define and analyze solutions of the Gause model. I show that depending on parameter values, there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by Gause, (2) trajectories converge to an equilibrium, or (3) the prey population escapes predator control and grows to infinity.
منابع مشابه
The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملPrey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملGlobal stability and sliding bifurcations of a non-smooth Gause predator-prey system
A non-smooth Gause predator–prey model with a constant refuge is proposed and analyzed. Firstly, the existence and stability of regular, virtual, pseudo-equilibria and tangent points are addressed. Then the relations between the existence of a regular equilibrium and a pseudo-equilibrium are studied, and the results indicate that the two types of equilibria cannot coexist. The sufficient and ne...
متن کاملDynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملLIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING
In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 274 1 شماره
صفحات -
تاریخ انتشار 2011